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PRECEDING PAGE BELANK NOT FILMED.

FOREWORD

This report is the sixth technical report under the present contract and
the ninth in a series. The general aim of the program is to develop models
adequate to account for the dynamic characteristics of selected systems in
mammals.

€ontinuing the general aim this report provides a theory of the arterial
pulse in what appears to be an exceptionally neat form, since it characterizes
the responses of the system in terms of transformations which may be graphed
by hand and easily visualized. This should provide a solid foundation for the
use of pulse wave techniques in diagnosis.

The problem was undertaken under the general supervision of the program
director, A. Iberall, This report is the more detailed exposition of intro-
ductory material presented at the November 1966 Annual Conference on Engineer-
ing in Medicine and Biology in San Francisco,

iii



PRECEDI
NG PAGE BLANK NOT FILMED,
TABLE OF CONIENTS
Section Page
Foreword P 0 0 06000 0080000000000 OO P 0RO SO0 OLO PPN OINOESIDPTOEOSLEIOSSIPOEPEPREIOSTESEDS iii
Introduction 0 0 05 0 000 00 PG O PP PCET 0B IIO DO OO OOPONPIED NS RY R 1
Mathenlatical Apparatus '......'...'.‘........................... 4
Application to Fluid Line Problems ..ccoeeecocevccscocrnacsccace 6

Application to a Class of Fluid Line Problems Similar to

Arterial Trees 0 0 00 P 000 PCB 0N PEO QRIS OO0 0 000NN OCINOGECIEOIEIEDITIITS 9
Summary 8 0 0 008 00 C00L LIPS0 BVOEP S ELINOOCOEEPSEOPBININLNIPIOOIOLIOSIOEESTOITOTTDS 14
Appendix A 00 00 00000 0P CPC P 0CISPD00CROOLONSELIOSIPRIORSEONOEPROEETOTCOTYDE 23

AppendiX B 9 0000000 06000000 0000008 00F0000000COIPPRNOIGIEIPOSLSEOEDONIDS 26

References 00 P P B OP0CEB PO PRIOPENNNLPEENPLSLOEINONBSBEEREBNOSEDILODN 31



INTRODUCTION

Analyses of transmission in arterial trees has generally fallen into
one of three categories:

1. Transient analyses
2. Fourier analyses
3. Analog simulation

The earlier investigators in the field viewed the inputs to the system in
terms of isolated "pulses" (individual heart beats). Their discussion was
basically phrased in terms of simple physical models, e.g., the windkessel
of Frank. An extensive bibliography is contained in (15). Later (due to
the influence of Womersley), Fourier decomposition became the mode of inves-
tigation for nearly everyone with the exception of J, Malcolm (who validly
attempted to model the entire system albeit with a distorted view of the
heart oscillator), Noordergraaf (17) and Taylor (23), whose investigations
admit to a continuous spectrum.

Womersley (26) discussed the response of a straight arterial segment
quite thoroughly. Actually, similar discussion was begun by Witzig (25), but
this effort lapsed into obscurity. Noordergraaf deals with the straight ar-
terial segment, by a sequence of delay line circuit models, each successive
model dealing with a broader spectrum of inputs. The larger segments are
then connected in a fashion suggested by gross anatomy, but not actually
representative of anatomy, and the terminal impedances are anticipated as
resistive. Taylor (22) has done numerous digital calculations of the im-
pedance of random arrays of branching systems made up of straight segments.

Other analyses of the system as a whole tend to consider it "equivalent"
to some ideal system with regular geometry which may be easily analyzed -
especially at the lower end. Early attempts of this kind include the several
lumped systems of Karreman (13) and later the regular geometry was replaced
by a continuous tapered model (9), (19), (5). Iberall (9) discusses its
anatomical justification.

In any case, there is a three~fold systems problem:

1. the problem of straight tube transmission,

2, the problem of terminal impedance,

3. the problem of dealing with transmission across a region
of gross branching which is somewhat regular.

In this paper we hope to:

1, show the relation of transient analysis of fluid lines
to harmonic analysis thereof,



2. indicate the practicality of formulating the transmission
problem with respect to transients in the time domain and
uniformly with respect to '"frequency" or pulse width within
the domain of linearity assumptions of Witzig (25), Iberall
(8), Womersley (26), etc.

3. apply this transient analysis to a whole class of systems
embracing in principle the normal range of mammalian arterial
systems, which should help to clarify the meaning of
"equivalence' among various idealized models mentioned.:

4. trace causal relations between familiar wave distortions
seen in arterial trees (see MacDonald (16)) and the basic
geometry of the trees, or that of the equivalent systems.

Heretofore, data concerning normal geometry of the arterial system has
been adapted from Green (6). This has been modified by Iberall (10). The
following table is taken from (10). The table shows:

1. An organization into "levels", the first level being the
aorta, the second consisting of all its branches, the third
consisting of all branches of these, etc.

2. A graduation of size, with some overlapping which is
initiated at first level by the variation in size of organs
fed.

3. A preservation of total cross-sectional area over the first
three levels.

4. A subsequent increase in cross-seﬁtional area according to
a rule for branching diameters, d = Zd_ where d's are
diameters and where k increases to 2.7 from the fourth
level. Suwa et al (21) give data showing a general nearly
linear correlation of arterial segment length, £, with
diameter, d, its constant depending somewhat on the tissue
examined, The values for £/d are generally between 5 and
30 (practically never below 3). ‘

These properties will be stated again as a formal arterial model, except
that for the purpose of clarity, the overlapping and occasional wide deviation
of £4/d will be minimized, This makes no difference in the results found.
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MATHEMATICAL APPARATUS

In considering transient behavior of fluid lines we restrict our atten-
tion to the class of functions of a real variable t (t will represent time)
having Fourier transforms; being continuous; having only a finite number of
maxima and minima; and being also such that f(t) = 0 for t < a, a being some
real number. In discussing such functions we shall encounter transformations
defined by

Flg « F(E))

1]

T(f)
i, e., by

Il

F(T(£)) (g = F(£))

where F denotes the Fourier transform and g is some complex valued function
of a real variable w,

The function g must, in general, have the property that g(~w) = g*(w)
where the asterisk denotes the complex conjugate. Transformations described
in this way are necessarily linear and the function g then is a representa-
tion of the transformation T. Further, if g; represents T1 and g9 represents
T2, then

1. 8, + 89 represents the transform T1 + T2 where T1 + T2 is

defined so that (T1 + T2)f = Tl(f) + T2(f) and

2. g1 ° 8, = 8 8 represents T1 . T2 = T2 . T1

where

(T 1) £ = T (T ().

Also in case there is a function k such that F(k) = g where g represents
T, then from the so-called folding theorem

Fl (g » F(f)) =k * £

i.e., _

LY

AT(E) = k% £

where k * f is the function h defined by

<
h = k (t- f du.
(t) Q_/V” (t~w) £ (u) du



The function h is called the convolution of k and f. This means that the
transformation T may also be represented in another sense by the kernel func~-
tion k and may be applied to £ by performing the convolution. Since convolu-
tion is not altogether difficult to visualize, we favor transformations with
the kernel representation in this analysis.

In fact, in order to show that F-1 (g * F(f)) exists for the g's in-
volved in transmission lines, we restrict the domain of allowable functions
to those of form

f = k*h
where h is transformable and

-1 e-k(jw)2/3

k = F° ( )

for some real number k. However, if k is small then f is graphically indis-
tinguishable from h so that the restriction is theoretically significant but
not a practical one,



APPLICATION TO FLUID LINE PROBLEMS

For a straight segment of fluid filled elastic tube the one-dimensional
aspect of the transmission problem is determined by the equations:

ZF(Q) = = JE(®)

ox ()
YF(P) = = JF(Q)

ax

(c.f. (4)) where Q is flow, P is pressure, these being functions of distance,
x, and time, t. The variable Z is called the line impedance; Y is called the
shunt admittance, these being complex valued functions of the frequency, w.

F is the Fourier transform, which, for functions of two variables, is defined

by
F (f)

g
g (Wyx) fmf (t,x) ejwtdt.

hadl <X

derives the relation between the vectors at two points, X1y Xye

q@,x,) coshQY(w)Z(wmm) ) sinh<,ﬁ(w>z<w>&) q(@,x,)

p(w,xz) = f%%%% sinh(/&(w)zcm)aé) cosh< (w)ZQDLﬁ%) pcw,xl)

One easily

1]

(2)

where
q = F(Q,p = F(P).

The matrix involved is called the chain matrix (24). If we regard (Q,P),
(q,p) as families of real valued or complex valued functions indexed by the

values of the continuous variable x then we may write the above as

x cosh (/?E AX) J[% sinh J§2 x4 q
2 " (2)

o
P, V/; sinh (J§E Ax) cosh (JEE LX) Py
2

q
1

Now, Z Y are given formally in (25, 8, 26).



" Explicitly

£, 23, S -1/2
[Y@)Z(®) rx = = jz (1 - z (3)
1 /—szo(J-jz)
-1/2
Z(w)  pc 1 - ZJng-jz!
Y ~ A - -
J-3z3 /= 32)
where
¢ = propagation velocity (Moens-Korteweg velocity

for arterics).

X
t = —
o c
ONx = distance along the tube
2
R
1 v
vV = kinematic viscosity of the fluid
r = tube radius (interior)
= w
z t1
0 = fluid density
A = cross sectional area of the tube
J J are Bessel functions
0, 1

io=

One may verify that
t

/Y (@)Z (@) x = 'Eg Gz + €(2))

1




where the function € is characterized by the existence of an inverse transform

-t [/t e(z)
F-l(} o' "1 ) = Ka

which is a kernel function., Thus eﬁf?z Ax.represents the product of a "trans-
lation" in time to T, where if h = Tgo (£f) then b (t) = £ (t+ty) and a
transform Ta where Ty (f) = K; * f. To the first order the graph of K, is
given in figure 1 for the case where to/t1 =1,

Further /Y/Z represents a transform of form A/pc[I = T¢q] where I is
identity i.e. I (f) = f and T¢1(f) = K¢p * £, K., is represented in figure
2. A method of calculation is given in Appendix k.

In summary, for a straight fluid filled tube speéified by the parameter

to/tys Pc/A, ty the relationship of the fldw @], and pressure Px], at
station x7, to the corresponding pair at station xj are given by

-1
Qx2 (Ca zb Sa Qx1

- l (4)
_?XZ _?bsa Ca le
where -1 =1
rI‘to a+ to Ta
C
a 2
-1T -1
S to a -~ ¢to a
a 2
£e (g 3=l
Zb T A (I Ttl)

Tto’ Ta’ Tt , are the transforms previously mentioned which are applied by
convolution with their kernel representations.

We remark that the transformation given in equation 4 has a set of
eigen vectors representing propagation in an infinite tube or one with
matched termination. The eigen vectors are pairs of the form

(Q,p—z (I-Ttl)'lq)
' 1

i,e., (Q,ZbQ). The "eigen values'" however are Ta Ta- .



APPLICATION TO A CLASS OF NETWORKS
SIMILAR TO ARTERIAL TREES

The formal definition of the class described in the introduction is as
follows:

The class consists of fluid filled labyrinths, each consisting of
straight tube segments joined together to form a multi-level structure. The
first level consists of a single progression of tube segments whose members
are non-increasing in diameter. Each segment of the progression terminates
at the beginning of two other segments of the system. If the ratio of the
diameters of the latter pair is less than .85, then the larger of the pair is
counted as next in the progression == otherwise the progression is terminated.
If the labyrinth contains at least three levels, then each tube involved in
the termination of a member of the progression is the first tube in a new
progression == each of which (progression) belongs to the second and last
level of the system., If the labyrinth contains at least four levels then
each tube involved in the termination of a segment of a second level pro-
gression is the beginning of a third level progression, The progressions
in a labyrinth will be termed arteries, and the progressions beginning at the
termini of members of a progression will be called its tributaries. While
somewhat strange, perhaps = upon careful study of the formalism = it will be
found to be quite adequate and natural as a description of the actual charac-
teristics of arterial trees for the most part.)

Furthermore the tributaries of an artery have the following regulari-
ties:

1. At the mouth of a tributary, if d, is the diameter of the nth seg-
ment, dnp41 1s the diameter o£ the next segment, and d; is the tributary dia-
meter, then dnk = dn+1k + di" where 2 < k < 3; or in case of a terminus,
apk = dtlk. For all arteries of the mth level, k has the same value and,
further, is a non-decreasing function of m.

2. If £; is the length of the ith segment, then 5 < £;/d; < 25,

3. If ty and ty are tributaries of the same artery having entrance dia-
meters dj and éz, then,65 < d1/d2 < .65"1 (i.e., small tributaries are ignored).

4. The number of segments in an artery is between 4 and 12,

5. The density of the fluid is about 1 gm/cm3; the 'kinematic viscosity
is about .035 poise.

6. The propagation velocity is a non-decreasing function of the level
ordinal, i.e., arteries of level m have velocity cp and cpyy 2 Che

7. The first artery of the labyrinth has an entrance diameter of at
least 1/2cm and a propagation velocity of 250 < ¢ < 750 cm/sec.



8. The last level consists of arteries of diameter less than 30 (u).
(The numerical values which were chosen are essentially suitable in a quanti-
tative sense for actual trees. However, their precise magnitude and ranges
are a matter of indifference).

To analyze the transient behavior of such a system, we begin with
arteries of the next to last level, The arteries of the last level are char-
acterized by an impedance transform Zp where Pp = Zg Q. Working up from
the bottom, it is theoretically possible to derive a driving point impedance
law for each system whose main artery is of the order of 3mm in size,

In Appendix B we show that conservatively speaking any such subsystem
of any of the systems under discussion may be replaced by a simple driving
point impedance law, provided that the inputs to the subsystem are restricted
to the convolution of functions of finite area with a function K given by

-l s - STV

While the frequency restriction proposed is consistent with errors in
wave form of not greater than a few per cent, an extension to high frequency
content as high as 10 cps is tolerable, although with possible degradation of
accuracy of the description. In any case, all the interesting inputs to a
real arterial system are actually so filtered, that is, such details as the
incisura are lost in transforming across the larger sized tube segments.
Hence this is no restriction.

The impedance law is of the form (from Appendix B)
> Vn
( T D D+A P = (1+L)Q (5)
n

where the summation in the expression is taken over the subsystems. D is the
differential operator, Ap is the total of the d.c. admittance of the tribu-
taries of the main (3mm) artery, L is a transform of small effect which
represents the effect of momentum.

L = 2% Loq

where R, is the d.c. resistance of the nth segment. Rg is the resistance of
Ehe terminal tributaries. L.q () = (Ky) ¢1 * £, where (KL) t1 1s represented
y
8(1-X)/j=
and
2Jl( -jz)

¢CE;J0./-jz

A graph of (KL) is shown in figure 3. The correction term as well as the
volume term is normally small. Above the 3mm size, the termini of the arterial
segments are sufficiently sparse to be of individual interest. The recursion

X(Z) =

10



relations for Q,, P, are given by equation 4 composed with the tributary exit
flow relation given by equation 5 (which defines Zp,, of figure 4). Thus the
point to point calculation may be carried out graphically by simple convolu-
tions with at most 3 families of kermel functions, K,, K.y, and (Ky)tl, cor-
responding to inverse transforms of

-to/tle(z)
(L e where €(z) = jz(=1+1/1-X) which is the convolution of

-1, - .
F “(e €) with itself "to/t1 times."

(2) 2 = 1 =/1-X

21, (/-3z)
-[iz 3 (32)

which has an inverse transform K, (figures 2, 3, 5).

(3) ((1-X)/jz where X(z) =

We shall now apply the theory to a typical arterial system or subsystem,
in particular a system consisting of an artery 25 cm long, 1/2 cm in diameter
and terminating at a bifurcation into two 2mm sized labyrinths (figure 6).

The theory thus far can be used with extensive computation to test all
sorts of interesting details of the response of an arterial system, or more
casually and geometrically to produce salient information about it. The
theory developed suffices to determine the unique response of the system to
an arbitrary pressure pulse, introduced at its source, Pi, the response con-
sisting of the flow pulses at the source and at the bifurcation, Q. , and Qr 1,
respectively, together with the pressure pulse at the bifurcation, .

To best illustrate the nature of the system's response, we shall assume
a smooth pressure pulse as an input.

Now to calculate the response, it would suffice to express the driving
point admittance transformation for the whole system and apply it to the input
pressure pulse, Pi, to find the flow pulse at the source, Q 3 the chain
matrix relation (equation 4) may then be used to compute P. 2nd Qr 1°

H

However, a more instructive and succinct method of calculation will be
used which, if carried to the ultimate, would proceed by successive "relaxa-
tions" of an initial guess for the terminal pressure, P,.. Actually, only one
new approximation or "relaxation" will be sufficient to capture the nature of
the system's response. The most instructive initial guess for P, is taken to
be the input pressure itself, namely Pj;.

To make the example most pertinent, we assume

C = 250cm/sec
so that

t&r.l sec, ti7.75 sec (i.e., T = 1 corresponds to t = .75 sec).

11



(This might be an average value if the tube is somewhat tapered.) Furthermore,
the calculations are carried out in dimensionless form. In dimensionless vari-
ables, the relation expressed by the chain matrix (equation 4) reduces to

Q, = C.Q - (I-Ttl) SaP1 (6)
P = —=%Q +C_P
o =T, 1 Tal

Where

and Cyz, S; involve phase lags of 0,1 sec. The transform T, , corresponds to
K¢y of figure 2, where unity on the abscissa corresponds to t = .75 sec.

Figure 7 shows a pair chosen according to the terminal impedance rela-
tion, equation 5_(referring to station 1, figure 6). Figure 8 shows the cor-
responding pair QJ, P/, which one would obtain at station 0 (figure 6) if the

arterial segment behaved as a pure inductive-capacitive transmission line.

We note the absence of the dicrotic waves or any particular steepening of
wave front. This is to be compared to the cofrect pair, Q s for the

E
fluid system to be exhibited in figure 12. o

In order to trace the sources of distortion, we introduce the intermedi-
ary Q which defines the undistorted portion of Q; in that the pair, Q,
(involving the assumed terminal value, Pl, shown in figure 9, is an "eigen
vector" of the fluid line segment, being transmitted with '"essentially" no
distortion, The relation of Q to Pl is given by

(In contrast, the eigen value pair for an L-C line is given by Q = Pl).

If a and Q were equal, then there would be no distortion. This may be
seen by substitution from the identity

into the second of equations 6; and by noting that since the pair Q, P1 is an
eigen vector, then

Q+C_By-



~

Here, T -1 "

a serves as an ''eigen value,

in that both components Q and 51 trans-

form in an identical fashion -- specifically by the transformation Tz~ 1, T,
being an operator which accomplishes only slight smoothing of the pulse.
(This explains the Erev1ous use of the word "essentially.") As it is Q # 61
and the difference Q1-Q is acted on by the distortion operator S,(1-T ;)" 1,
again from equations 6, Finally the result is added to the pressure P, as a
pressure distortion.

In a similar fashion, the additive transmissional distortion for flow is
found using a corresponding eigen vector pair, Qp, P, shown in figure 10.

Figure 11 shows Ql’ fl together with the add1t1ve distortions which are
referred to as €_ and € The sums are shown as Qo, Po in figure 12, This
figure already exhibits several familiar features seen in the actual arterial

pulse pairs, e.g., the dicrotic wave and steepening in the rising ramp of
pressure.,

But, again, this calculation simply furnishes an exploratory point char-
acteristic of the relation between terminal pressures, their corresponding
terminal flows, and pressure-flow pairs at the source. _From the systems point
of view, the pulses labelled as Ql’ Py of figure 7 and Q of figure 12 consti-
tute the response to the input pressure pulse labelled as P in figure 12,

To continue our illustration, let us assume that we wish to find the re-
sponse of_the system to the input pressure, Pi, where Pi is the pulse
labelled Pl in figure 7. We may obtain the response by finding what terminal
pair Qr 1, P would, when_transformed by the process just outlined, yield
the glven 1nput pressure, Pl' This could be done by a process of relaxation
using the previous intermediate results,

Specifically, since the mismatch in impedance between the main tube and
the terminal system is of second order, then to the first order, the solution
for the pressure, Pr, of our current problem is the difference between the
input graph (shown as Pl in figure 11) and the graph marked ¢_ in the same
figure. Further corrections involve estimating that pressure’ curve which
transforms into -ep by the process already outlined.

At any rate it is clear that the resulting pressure response at station
1 would involve the dicrotic wave and ramp steepening already noted.

13



SUMMARY

To summarize, let us survey the whole size range involved in an arterial
tree of the class we have chosen to consider.

First, small subsystems involving only arteries appreciably smaller than
3mm may be represented by driving point impedances which are identical to a
simple resistive~capacitive network, the individual segments behaving basical-
ly as lumped elements each contributing only slightly to the capacitance.

From this point up to the 3mm size, the individual elements no longer
contribute inductance-free behavior, so that one has to begin paying attention
to the changing character of the line impedance at a point below this level.
The effect of the hybrid line impedance on the driving point impedance of a
3mm labyrinth is summarized in equation 5.

No detailed example of a calculation of the lumped network at this size
has been given, although the impedance of the components is available from the
line impedance and the chain matrix,

Immediately above the 3mm size, the effect of mismatching between the
line impedance and the terminal impedance is evident from our example; for if
they were equal, Q of figure 9 would be equal to Q of figure 7. In fact,
the distortion of the calculated input pressure, €_ of figure 11, is due to
this mismatching in conjunction with the effect of the phase lag across the
tube -= which at the level of this example is of the order of 0.l sec.

Thus, it is hard to escape feeling that the peculiarity of the pulse
transmission seen in arterial trees is well ascribed to the hybrid impedance
nature of the fluid line segments in the system of the general dimensions con=-
sidered in the example, i.e., one should expect the effects to be maximal in
a zone where reflection from terminal or side tubes involves pulses of the
same time width as twice the phase lag. From another view, these lines ==
with reference to the pulse widths considered == have a line impedance char=-
acter which in contrast to the better matched inductive=-capacitive line (see
figure 8) involves '"overshoots'" in pressure and "undershoots'" in flow which
are reflected at the side branches.

Finally, arteries larger than .5 cm soon appear essentially inductive-
capacitive in nature owing to the broadening of the kernel K. to where its
effect becomes negligible, except that there will be an erasure of high fre-
quency or sharp detail because the filtering action represented by Kz (figure
1) becomes appreciable in any one_segment or chain of segments for pulse
widths of .05 sec when™X = tt;/t,” has a value of about 4 for t > .05, i.e.,
when t;/t b2 80. Thus, the larger tubes restrict the possible detail to be
dealt w1tg in the smaller ones as noted earlier.

1k
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But

where

Appendix A

In order to evaluate the kernels KX’ Ktl’ we let t, = 1 and express

1
23, (J~32)

-1{ -3 .
F (e JZII(JZ)) = t(2 5 E1(t) - u(t- 2]

u is the unit step function , Further,

F“l(‘jzx('>) — (t) - u(e-2
e %1 (jz :n:t(2t [uce ut]

-(/’z LD B (e

iz 1 (i

]

'\IIH

x(Z) =

But, in general

F—l(J—}; g (fi2)

N
i}
A I,_.
T
2
1)
1
. =
~
I~
rt
=
~
~
o

jz o
where
h = F_l(g).
Therefore, on changing variables
/2

-1(___ e/_I (/Tz)) i _;_ /’ o~ (1 + sin oY lt a6 = h ()
ﬁ;-n/z

/7

Similarly

g

——e‘/—-I(f—)

7 )

/2 9
.//. e-(1 + sin 6)"/at sin 6 d6 = hz(t),

L
VG;E 2

1l

ZIl(qﬁE) e-«ﬁz- )
jz J;E 2

F-l
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2k

and finally the kernel for X, KX satisfies

Ky ¥y = (;%:> * hy

it

Similarly when is known K_., represented by 1 - ¢/1-X must satisfy
t P

1

- * -
K - Kep Ky %

(KL)tl must satisfy
®a = (20 v i)

where u is the unit step function.
We have still to evaluate the kernels Ka.

Now

(@) _ e—ﬁ?e-'e' (z)

where € is bounded.

Thus

e-E(Z) = e-J‘Tz' <1 - €§?> + €-§l(2) s .)

where the series converges uniformly in terms of z.

if u denotes the unit step function, then the kernel K€ satisfies



1 1
Gt @0 () e ()

On the other hand the graph of €(z) is represented in figyre 13 as the dif-
ference between the dotted lines and solid lines - from which the transform
may also be estimated.

The first order effect of Ka is that of

F-1(e-/3';) R SRS V7
ZVﬁt3
which is graphed in figure 1 (where & = t and k) = 1).

From the curves shown in Figures 1, 2, 3, and 5, any desired kernel
may be obtained. For example, if K represents the function Ktl for t1 =1,
then for any other value of t,

Kt1 (t) = 1/t1 K(t/tl)

Similarly, for the other kernels. Hence one obtains the desired function by
re-scaling.
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APPENDIX B
The transform T_ is represented by K_ = F-l( )
a a Ea

where

—to/tl e@»tl) -e@btl) N+ r/tl
gaQb) = e = \e

where to/tl = N+ R/t1 , N an integer and R < ty.
If t1 is quite small then to/tl1 may be taken to be the nearest integer because

the effect of to/tl on K, is surely continuous = in fact to/tl will take an
integral value somewhere within the tube. In that case K, is equal to the

convolution of F-l(ga) = Ka1 with itself N times where galqb) = e-e@ntl)
t

]
¢ 1 -c(z)+jz) t/tl
Kal r = = e dz
Kal(T)dT,T = =

(?Ka%>T - = 1

then

i. e.

t

Therefore the area under the curve is independent of t;. It will be seen
that the area should be unity, for if a pulse of flow is introduced into an
infinite line and the beginning of the line is then closed, then the flow
pulse at the source is transformed by K_; into the flow pulse at a station
removed so that ty/t] = 1 = i.e. so that Ax = cty. The area under the pres-
sure pulse is multiplied by the area under Kal. But the area under the pulse
at the new stations is equal to the total flow past that station, as is the
area under the original pulse. Therefore these areas must be the same =
otherwise some excess volume would be permanently trapped between the two
stations, causing a permanent rise in pressure. In figure 1 the solid lines
give the real and imaginary part of the exponent of g,; and the curve

/3z + 3/2 is shown for comparison.

We see from figure 1 that the area under K, is nearly all confined to
@ < 3. This means that for tubes of diameter less than 1/3 cm when t] <1
the area under K, is confined to t < 3. But because tg/ty = 1/50, K, has
little effect on a single segment. Likewise because of small transit time
C, of equation (4) > reduces to the identity I.
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< While S, reduces to a transform represented by /YZ Ax for inputs say of
~k/jz

order e s k> k, , since the series

Ze— [iz (X@zE)"

n!

converges uniformily,

Inputs of that order may be thought of as members of the set of all £
such that f = m(K * h),

K = 71 (?-K/G;> ; ~//;h(t) |de = 1.

These are characterized as sums of curves at least as '"smooth" and as "broad"

as
2 3
k ) 2
-1f -x f; t.\2  -k7el/t
F 1<? k J%) = V/% —%?—- (:—-—%) e
k ty

2
whose features are confined to t < 3k tl'

where

Therefore equation (2') reduces to

F(sz) _ I ¥ F(Qxl) | (1)
F(E,) zx 1] | FC,)
i. e, to equation (1) T
(The eigen values are A =14+t D+ D —~ti
- o0 = l-Tt1

Consider an artery belonging to one of the levels in this domain (figure 4).
The tributary systems are represented dynamically by their impedance functions,
(ZE)n the recursion relations from terminus to source are
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F(Q,,) = F(Q) +(§ o + (zE’>;1H> F(2) -
F_,,) = _tf'ﬁ_x(_f-i% F(Q) + F(B) (B2)
I F@)
X)) = Z

—— /=y > F(Q)
e (i T F G B
If the terminal pressure were nearly 0 the first relation would become:

Q1 = Q

(o]
7. N
PP = % Tx T

Now jz/(l=X)=8 for z < 1 and is smaller in abs. value that 8z for z > 1.

If

where

L]
K = F-l(e-3‘/']—z) ;ﬁhldt = 1

[+
then one may show

<F(P1) - i‘;—%—x F(Qo)> < me™3

for all w, This means that graphically

P. = 8pAx

1 tlA

Q + €

o

where € is uniformily small with respect to Q . Thus, the terminal relation
reduces to Poiseuille's law or something equivalent in character for actual
blood flow if one considers the rheology problem,

Further if, in particular, the inputs to an artery con5137 oﬁﬂiums of
curves as smooth and as broad in the previous sense as F"l(e"(l DN )

which is the typical case in arterial systems below the 3mm size, then first
of all, because of attenuation, one expects the situation to improve in all of
the tributary systems. Thus if the artery is of such diameter that e=(1/3)Y30

replaces e~It1® in the previous discussion - i.e., /v = t;=21/81. Then
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inertia may be ignored and the expression jZ/(1-X) in equation (B2) may be re-
placed by the expression 1/8. The condition on diameter is d < 1/25 cm.

We remark parenthetically that from another point of view 8(1-X)/jz has
an inverse transform (Kp)¢; so that multiplying by JZ/8(1-X) is equivalent to
transforming a function f into I where Xp)eq * T =

We may assume that near the end of the system (ZE> b1 =AY /8pix.
Dividing by the capacitive term, A Ax/pc2 from equation B2,g1ves
t c2 2 2 2
1 _ r c ~_C > 5000
- 2
8Ax2 8 x .035Ax 8 x50 8

As we go to higher levels the capacitance, AAx/pc s, grows as the volume while
the d.c. admittance grows about linearly with AR, 1 < K < 3/2. Hence the

capitance may eventually become significant in a solution to equation (B2)
(e.g., consider a Picard's series), but this only when the radius ratio r/rE

is of the order of y/5000/8, which happens at a diameter of about 1 mm.
Thus the system below the 1/2 mm size appears highly resistive.

For 1/2 < d < 3 (mm) equation (B2) should still apply, but Zg1 is a
resistance Rg] of the order of N times the terminal resistance of the system,
where N is the number of terminal resistors on to tributaries of the system.
Thus Rgj is bound to be large compared to the local resistance 8pr/t1A since,
as a variable, R, changes eventually by the area ratio while the local re=-
sistance changes "with the cube of the radius. (Since Ax/r is nearly constant).

Also the quantity AAx/c2 is very small compared to SDAx/tlA. This allows the
following simplication:

If Pm, Q, are the pressure and flows at the entrance of a 2-3 mm artery
(whose tributaries are essentially of the resistive size), Pp» QE = Rg P are

those at the last tributary, D is the differential operator, Li1 is the trans-
form represented by

AnAan

1
0 +
Jz dA - pc2 Ren
8(l-x) 2% %n =
8pAx
L
t, A tln 0
| In'n -



-»
Then the relation among these is given by Picard's series and will be written

in informal symbolism as
by
Qm An QE
= e

Fm_ % %

The simplification is that the series converges so rapidly that this expres-
sion becomes essentially

Q, Q

E

[I + Zn:An]

Pm RE QE
or
1 2
o Zsprn V/ocD + %__‘, /R, o
1 = n t A
In'™n 1

where V is the volume of the system.

Therefore the driving point impedance of a 3 mm arterial system given by

(1 +Z—E—;1-1- Ltl) Q (B3)

vD
(——2 + Zl/REr)Pm

pc
where
SDAxn
R =
n t1nAn
In representative figures
107> (D+H1)P_ =  (14L)
m %

where 1-1 represented by a kernel of area a,l0 < a < 200. Thus, these tubes
look like simple lumped R-C elements.
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